Extensions 1→N→G→Q→1 with N=C336D4 and Q=C2

Direct product G=N×Q with N=C336D4 and Q=C2
dρLabelID
C2×C336D4144C2xC3^3:6D4432,680

Semidirect products G=N:Q with N=C336D4 and Q=C2
extensionφ:Q→Out NdρLabelID
C336D41C2 = S3×D6⋊S3φ: C2/C1C2 ⊆ Out C336D4488-C3^3:6D4:1C2432,597
C336D42C2 = D6⋊S32φ: C2/C1C2 ⊆ Out C336D4488-C3^3:6D4:2C2432,600
C336D43C2 = D6.S32φ: C2/C1C2 ⊆ Out C336D4488-C3^3:6D4:3C2432,607
C336D44C2 = D6.4S32φ: C2/C1C2 ⊆ Out C336D4488-C3^3:6D4:4C2432,608
C336D45C2 = (C3×D12)⋊S3φ: C2/C1C2 ⊆ Out C336D4144C3^3:6D4:5C2432,661
C336D46C2 = C12.57S32φ: C2/C1C2 ⊆ Out C336D4144C3^3:6D4:6C2432,668
C336D47C2 = C12⋊S32φ: C2/C1C2 ⊆ Out C336D472C3^3:6D4:7C2432,673
C336D48C2 = C62.91D6φ: C2/C1C2 ⊆ Out C336D472C3^3:6D4:8C2432,676
C336D49C2 = S3×C327D4φ: C2/C1C2 ⊆ Out C336D472C3^3:6D4:9C2432,684
C336D410C2 = C3⋊S3×C3⋊D4φ: C2/C1C2 ⊆ Out C336D472C3^3:6D4:10C2432,685
C336D411C2 = C12.73S32φ: trivial image72C3^3:6D4:11C2432,667


׿
×
𝔽